
Digital Money and DBCs

Jonathan “smuggler” Logan

2018-11-12T19:20:33Z

This article as PDF1.

It’s been more than a decade since I got involved in the design and development
of digital payment systems. My focus has always been primarily that of a
cryptoanarchist - privacy and functionality first, regulatory compliance second.
Since I got involved in this field, a major innovation took place: Blockchain cryp-
tocurrencies. This innovation injected hundreds of thousands of new people into
the realm of cypherpunk ideas and online “less regulated” commerce. Thousands
of new developers are now working on new tools and I applaud that. However,
in engaging with many of these new faces I discovered that their understanding
of what other technologies exist - or have existed - beyond the blockchain is
wanting. In almost every conversation I find out that terms like “digital bearer
certificate”, “verifiable book money”, “blind signatures” and a host of others
are virtually unheard of. The generation change from pre-blockchain age to
blockchain age has come with a lot of old knowledge being lost. But in my
opinion it is knowledge that is still useful, and possibly even crucial. Hence I de-
cided to write this text, touching upon some of these forgotten technologies, and
specifically recording my own contributions in the field. May it help everybody
to widen their box of thought and find inspiration for better solutions, and to
gain a better understanding of the problems to be solved.

Digital Money

Let’s start with defining “digital money”. Digital money is the digital representa-
tion of money, which is in turn a medium of value transfer and storage. Digital
money allows making payments and to keep value for a time. Digital money can
represent currencies like the US Dollar or the EURO, or precious metals like gold
or silver. A “digital currency” is something different: Instead of representing
some other money, digital currencies themselves have a monetary function as in
being able to create and regulate the supply of money. Digital currencies are
digital money plus monetary control.

1/files/DigitalMoneyDBC.pdf

1

/files/DigitalMoneyDBC.pdf


Digital Book Money

The most basic form of digital money is “digital book money”, commonly known
under the term “e-money” or “electronic money”. This includes most of the
payment systems we use today, from giro money on your bank account, to PayPal,
credit cards and various internet payment systems. Digital book money works
by the operator keeping a record of accounts and balances that are controlled by
the users of the system. In the simplest form this is a simple table stating which
users has how much money in their account.

Digital book money has a bad reputation in some circles because it does nothing
to prevent operators from manipulating the money kept, invent it, steal it, or
make transfers without user consent. This however is not a fair description of
more advanced digital book money systems. More modern systems are verifiable
and auditable. As an example, systems that derive from OpenTransactions
implement mutually signed transactions and balances which allow both the
operator as well as the user to present a cryptographically signed, fixed order,
immutable history of transactions and the balances they result in. This works
by each account keeping the hash of the last transaction, balance, and signatures
by both user and operator of these values. Each new transaction includes the
hash of the last transaction, the balance before the transaction is executed, the
balance after the transaction is executed, additional transaction details (like the
destination account of value transaction and its amount), and the signatures of
both the operator and the user (account owner). This way both the operator
as well as the user have a signed statement showing the state of an account
which can be demonstrated to a third party in case of suspected abuse. Further
developments in that sphere concern the auditability of the sum of all balances in
a system by forming a merkle tree out of the accounts and their balances as the
leaves, and then taking sums in the nodes of the tree. That merkle tree is then
added into a hash chain and the head of that chain published. Now auditors
that know the signed statements of some accounts can verify that the published
accounting is probable true, and that the operator is not inventing or stealing
money. Any account holder can verify that public accounting for himself, and
publish a proof of any discrepancy if such exists. There have also been discussions
about using bullet proofs to the same end. Taking these modern developments
into account, digital book money systems present a very efficient, extremely
cheap to operate, and publicly verifiable means to provide infrastructure for
person-to-person transfers. They do however provide no privacy nor are they
permission-less.

Blockchain Cryptocurrencies

Instead of operating a single centralized record of accounts and balances that is
modified by a single entity, blockchain cryptocurrencies replicate those records

2



across many entities of unknown trustworthiness. Changes to the records are
executed by those entities by applying new transactions to the current state of
record, while adhering to a protocol that defines validity of transactions and
access control to records (usually through the use of digital signatures). A
complete history of valid transactions is distributed over all entities taking part
in operating a blockchain cryptocurrency, allowing each to calculate the current
state of records for the system.

The order in which transactions are processed is a crucial element of any system
that changes global state. For systems operated by a single entity, that entity
can define and assure order easily on a first come, first served basis. In a
distributed system of untrusted parties, additional efforts must be taken to
ensure that all parties execute transactions in exactly the same order. To
this end, the system must select an authoritative party (the “leader”) that
defines the order of transactions. In blockchain based systems, this party is only
authoritative for a short amount of time and replaced with an unpredictable
other party for the next time slot. Various methods for leader selection exist.
Some systems use election protocols, others use proof-of-stake or proof-of-work
protocols. Common to all of these methods is that they result in one leader
being selected to define the order of transactions for a short amount of time,
leading to the synchronization of transactions and state for the whole system.
Additionally, blockchain cryptocurrencies have a money-creation function which
usually works by rewarding the leader by allowing it to create some defined
amount of new money in return for its work. It is important to note that the
definition of which rules apply to verify transactions, select leaders, and create
new money are purely defined in software and become valid only due to the
consensus of participating parties.

Digital Bearer Certificates

The remainder of this text deals with “Digital Bearer Certificates” (DBC for
short). I’ll try to describe both the technology itself as well as the history of
DBCs as experienced by me.

A DBC is nothing else but a string of bits that are ascribed value. It directly
represents the money, without reference to any account, instead it is the money
itself. Consider a DBC to be a digital bank note that can be directly transmitted
between parties, does not require any account to be linked to a user, nor a widely
distributed global state of the system.

For this to work, a DBC needs to fulfill two requirements:

First, it needs to be verifiable as being a DBC issued by some party. This is
usually done by the issuer signing the DBC with a key. Second, it needs to be
unique. A string of bits can be copied without limitations, but only one of those

3



copies carries value. This is achieved by being able to exchange one DBC for
another at the issuer, and recording the original DBC as being de-validated.

A typical DBC encodes the currency or asset in which it is denominated (the
“Denomination”), the number of units of that denomination that it represents
(the “Amount”), a random nonce, and a signature by the issuer.

A typical DBC system consists of two types of entities: The Mint, which issues
the DBCs. It must be able to verify that DBCs presented to a mint have
been issued by that mint, which is usually done by verifying the signature. It
furthermore has to be able to ensure the uniqueness of a DBC, usually by keeping
a record of DBCs that have been de-validated already. The record of de-validated
DBCs is usually called “Spendbook”. And the User that interacts with the Mint
and other users by transmitting DBCs.

In a typical transaction, user A would send a DBC 1 to user B, user B would then
communicate with the mint to exchange DBC 1 into a new DBC 2. The mint
recording DBC 1 as being de-validated. Should user A try to exchange DBC
1 at the mint at a later moment, the mint would recognize it as de-validated,
refusing the replacement. This basic protocol ensures that a DBC cannot be
used more than once in a transaction.

DBC systems typically are extremely cheap to operate and allow very fast
finalization of transactions, as well as allowing many transactions to be processed
in a short time. Typically the time to finalization of a transaction only barely
exceeds the network latency between the user and the mint, and mints running
on commodity laptop hardware can typically deal with thousands of transactions
per second. The cost of operation is determined mostly by once creating and
once verifying a digital signature per DBC, storing a unique identifier for each
DBC (around 32 bytes per DBC), and transmitting the DBC over the network
twice (a DBC usually being smaller than 250 bytes). This makes DBC systems
prime candidates for extremely fast and cheap micro payments.

Let’s go into a little more detail.

Spendbook

Each mint has to maintain a record of DBCs that have been de-validated so to
assure uniqueness of DBCs and thus prevent duplicate spending of a DBC. The
spendbook is the only element of a Mint that has to be tightly synchronized and
access to it has to be strictly serialized. Failure at this can lead to race conditions
which allow double spending of DBCs. Spendbooks can be easily distributed
and sharded to increase reliability and transaction performance. Spendbooks
only implement a single function:

bool Append_iff_unknown(value) : Append a value to a spendbook if and only
if that value is not yet present in the spendbook. Return true if the value has
been appended, false if the value has not been appended.

4



The value added to the spendbook is usually a cryptographic hash of a DBC.

Signatures

A mint must be able to verify that a DBC was issued by it. To this end, DBCs
carry a digital signature by the mint. On being presented a DBC, the mint
verifies the signature and only then tries to record it to the spendbook. Only if
signature verification and spending (Append_iff_unkown) are successful then
DBC has been valid. Early experimental mints used simple HMACs with a
secret value for signatures. Later developments used RSA, DSA and ECDSA
signatures with published public keys that would allow users to pre-verify a DBC
before sending it to the mint.

Blind signatures

Blind signatures allow for the signer to sign data in such a way that the signature
can be publicly verified, but without the signer knowing what data it signed.
This involves a protocol in which the user “blinds” the data, sends the blinded
data to the signer, the signer creates the signature, and then the user un-blinds
the data and signature and provides it to a third party for verification. The
signature over the original data would show as being validly signed by the signer,
without the signer knowing at the time of signature what data it signed. Blind
untraceable signatures furthermore allow a signer to sign data so that it will not
be able to know what data it signed, nor be able to find out when the signer
made the signature even if both the un-blinded data and the signature are known
to the signer afterwards. This allows for the construction of mints that can issue
DBCs in such a way that the mint has no way to link input and output DBCs,
nor be able to determine in any way when it signed a DBC or for whom. To
emphasize this: Blind signatures allow the construction of DBC systems that
allow for fully anonymous and untraceable transactions, verifiable by the user,
without the mint having to be honest to maintain anonymity and un-traceability.
However, blind signatures make the mint vulnerable to be defrauded by users.
The blinding and un-blinding steps above are controlled by the user alone, with
the Mint not knowing if the encoded denomination and amount is valid. The
way to secure a Mint against this was usually to have the user provide many
different blinded DBC candidates for signing, then the mint randomly requires
the user to prove the content of all but one of those candidates, and then signing
the remaining DBC if all other candidates were valid. In case a user would be
discovered presenting a fraudulent DBC candidate to the Mint, some punishment
would be exercised by the mint.

5



Mint functions

Fundamentally a mint only implements two basic functions:

• Issue: Create a new DBC by encoding denomination, amount and a random
nonce, and sign it with the mints key.

• Spend: Destroy a DBC by verifying the signature, and recording the DBC
in the spendbook.

These basic functions are not directly exposed to users. Instead, typical Mints
implement these public functions:

• Reissue: Spend a user provided DBC, and issue a new DBC on success.
Return the new DBC to the user.

• Split: Spend a user provided DBC, and issue two or more new DBC so
that the sum of amounts of the new DBCs equal the user provided DBC.
Return the new DBCs to the user.

• Combine: Spend the user provided DBCs (plural!). Issue a new DBC so
that its amount equals the sum of amounts of the DBCs provided by the
user. Return the new DBC to the user.

More advanced implementations would only expose a “Reissue” function to the
user which would be able to deal with any number of user provided DBCs and
any number of output DBCs.

Examples from history

Yodelbank

This DBC system was available on an IRC network frequented by cypherpunks
in the early 2000s. Users could directly send each other DBCs through IRC,
and interact with the Mint through IRC as well. Yodelbank offered DBCs that
presented value in a variety of digital gold currency systems. Users could buy
and sell DBCs for egold, 1MDC, pecunix and several other currencies. Yodelbank
encoded DBCs in a human-readable format and signed them with HMAC. This
allowed users to transact without the need for any special software, just copying
and pasting short lines of data.

Digicash

Invented and founded by David Chaum. It used blind signatures to provide un-
traceablity for users. Users would open an account with Digicash and withdraw
value in the form of blindly signed DBCs. The user could then transfer DBCs to
other users which could then pay those in to their account. Digicash only broke
the traceability between the sending and receiving user, but did not provide

6



anonymity to use the system. It also required software on the user’s computer
to be used.

eCache

My involvement with DBC systems started with being exposed to the Yodelbank
system when being a resident of the Invisible IRC Project where it ran. I wanted
a system that was more powerful and functional, and solved some shortcomings
of it. Hence I ventured into implementing my own DBC software. Though I
wrote the software, I never operated a public Mint due to legal reasons. Others
however used my software to operate small mints that facilitated transactions in
closed user groups, and even a small public mint that never caught any traction.
With the advent of blockchain cryptocurrencies, this public mint disappeared.
eCache did however have some influence on other systems, such as some ideas
being picked up again by Vouchersafe and OpenTransactions. Both of these
systems originate from the same group of users that discussed DBC systems on
IIP and are still operational and in active use. No eCache system is operational
as far as I know. There have been no changes to the design after 2008, though
some new ideas will be touched on at the end of this text.

Auditable and Verifiable DBC mints

A fundamental issue with DBC systems is that they are hard to protect against
dishonest mints. A mint can issue DBCs beyond the actual money it has
in backing, or falsely claim that a DBC has already been spent before when
presented by the user. Solving this requires a few additions to the DBC design:

DBC Expiry

Recording every spent DBC not just requires storing potentially a lot of data
over time, but also increase the resources spent on verifying if a DBC has already
been spent. For this reason eCache DBCs expire at some point after which
they are invalid. Every eCache DBC thus encodes a future date at which the
DBC will become invalid if not reissued before. The default expiry date was
at least one year in the future. The spendbook can now be implemented by an
expiry-indexed set of bloom filters that can simply be deleted after the expiry
time has been reached.

HSM Signatures

Only recording spent DBCs (in contrast to recording issued and spent DBCs)
requires that the signing key of the Mint is kept very secure. eCache solved that

7



by implementing the signature verification and signing operation in an HSM
(Hardware Security Module) that would furthermore keep track of input and
output amounts of a transaction. Furthermore the signing key would be rotated
every few weeks. For each key, eCache tracks the total amount of value signed
with it, subtracting from that amount with every signature verification. That
way the Mint can make sure that it is not presented with DBCs generated from
a stolen signing key.

Ownership

eCache DBCs encode information about who can spend the DBC, that is: Who
the owner is. This is simply a hash of a public signing key that is used to verify
any transaction in which that DBC is used. Any transaction command from
the user to the mint has to be signed by the private key that corresponds to
the public key encoded in the DBC, otherwise the mint will not process the
transaction. This allows the mint to record a proof that the DBC has been spent
legitimately by its owner, and not destroyed by the mint without user consent.
Furthermore the eCache DBC allows a second owner which becomes valid after
a defined date which is also encoded in the DBC. This means that eCache DBCs
record an owner that can spend them before a user defined date X, and another
owner that can spend it afterwards. Owners are only identified by public key,
for every DBC a new owner key pair is generated, and usually not reused. In a
mint transaction, all input DBCs must be owned by the same owner public key.
Combining multiple DBCs with different owners will require that input DBCs
are first reissued to the same owner individually, and then combined in a later
transaction.

Publicly verifiable Signatures

Standard eCache DBCs are signed using ECDSA with a public key that is known
to users. This allows the pre-verification of DBCs by users before even talking
to the Mint.

Signed Mint responses

Any response by the Mint to a user is signed so it can be verified by anybody
that it actually came from the Mint.

Idempotent API

Any time the same parameters for a transaction are sent from a user to the mint,
the exact same response would be returned. This prevents newly created DBCs
to be lost, but it also allows for the user to publish his transaction request and

8



have it be verified by anybody. Combined with signatures done with ED25519
and DBC templates (see below) this can be implemented trivially by only caching
the result branch of a transaction, indexed by the hash of the transaction input.
The transaction cache expires after a week, giving ample time to question the
honesty of the mint, or recover from untimely loss of connectivity.

User-provided DBC templates

Instead of creating and encoding DBCs itself, eCache mints require the user to
provide it with a template for newly to be signed DBCs that only lack the mint’s
signature. The mint only verifies the templates to be valid in the context of the
transaction, and signs them accordingly. For each transaction eCache allows
one or two input DBCs, and one or two output DBCs, and thus implements
the reissue, split and combine functions in one flexible reissue operation. In the
case of two input DBCs, the transaction includes three branches of output DBC
templates for three possible states of the input DBCs:

1. Both input DBCs are unspent and valid.
2. The first input DBC is unspent and valid, the second is not.
3. The second input DBC is unspent and valid, the first is not.

Constructing transactions like this allows for lock-free writing to the spendbook
(which also allows for the easy distribution of the spendbook) without the
requirement of rollbacks or introducing complexities that can introduce race
conditions.

Concealed unique values in templates

Since transactions are publicly recorded for verification and auditing purposes
(see below), trivial tracing has to be prevented. For this reason the nonces and
ownership included in the DBC templates are encrypted to a secret that is itself
encrypted to the mint and included in the signed transaction. Both user and
mint can decrypt the secret in the future to reveal the exact nonce and ownership
in the output DBC, if that need arrives.

Public transaction history log

eCache mints publish a record of all transactions in an unchangeable, append-
only data structure. It is implemented as a hash-chain in which every entry
includes the hash of the previous entry. This prevents re-ordering of the history.
The current head of the chain can be requested from the mint any time, returning
the head, current time, and a signature of both. The complete history can also
be downloaded and verified.

The log includes these entries:

9



1. Public key of the signing key pair that the mint uses. These entries include
the time range in which the public key is valid.

2. Changes to the backing capital of the mint. If value is added or removed
from the capital this is recorded.

3. Changes to the issued capital of the mint. If the total value of issued DBCs
changes then this is recorded. The issue capital must always be less then
the backing capital and the difference defines the maximum size of the
spend pool (see below).

4. Spend transactions: The user-provided transaction, including all input
DBCs, output DBC templates, encrypted shared secret and owner signature.
Furthermore the mint adds the result branch selected (see above).

5. DBC spend: The spent DBC, including signature. Directly follows the
Spend transaction.

6. DBC issue: The newly issued DBC but without signature.
7. Pool entry. See below.

The history log allows for the recording of proof of mint operations. Transactions
now become publicly verifiable if the user so wishes. Should the mint be suspected
of dishonesty, the user can publish his transaction. The result of the transaction,
and if so requested even the output DBCs, can be validated publicly. Furthermore
the current capital of the mint becomes verifiable, making it possible to audit
its backing versus issued DBCs.

Spend-Pool

Not all transactions with the Mint are recorded immediately into the history
log. Spend operations are instead kept secret in pool of unrecorded transactions.
The total amount represented by DBCs spent in those transactions is lower
than the difference between backing capital and issued capital. Whenever a
spend transaction reaches the mint it will first be recorded in the spend pool.
Furthermore a hash is derived from a mint-kown secret and the hash of the
transaction and recorded in the history log. When the amount of capital in the
spend pool reaches a defined threshold, or the total number of transactions in the
pool reaches a defined threshold, a random transaction from the pool is selected,
removed from the pool and recorded in the history log. The combination of
history log, signed transactions, concealed unique values and spend pool allows
public verification on demand, while making public tracing of transactions hard.
Care must be taken by the users to use common DBC amounts to prevent tracing
through unique amounts.

Half-offline capability

The combination of ownership and publicly verifiable mint signatures allows for
transactions in which the recipient can do a check against double-spends without
having to communicate with the mint. The recipient only has to keep record of

10



the DBCs sent to it that have a specific owner. If a DBC is presented twice a
double spend is detected, if the DBC is unique and carries a valid signature by
the mint the recipient can be sure that the DBC will be accepted by the mint
for reissue at a later point in time. Since DBCs can include two owners that are
exclusive to each other and cover two defined time spans, it is also possible to
pre-generate DBCs to be used in an offline manner at a later point in time. The
user simply generates DBCs for the intended recipient that after a certain time
fall back to be reissue-able by the user’s key. This allows transactions between
two parties in which both can be offline for a defined, possibly very long, time
span without needing to interact with the mint. This makes the system very
usable for scenarios of mobile point of sales transactions and simple hardware
implementations, such as in the case of payment cards, public transport tickets,
etc. Furthermore it makes the system much less vulnerable against denial of
service attacks. To clarify: There are only two cases which require one of the
transaction parties to talk to the mint during the transaction: The recipient is
unknown, or the payment amount is unknown. In all other cases the transaction
can be structured so that no communication with the mint is required during
the transaction.

Recovery

The public history log allows the recovery of the mint using only public data.
The only DBCs that are at risk for double spend at that point are those in the
spend pool. If the pool entry secret is known even those DBCs can be prevented
from being double spent.

eCache anonymity

Blind signatures

One feature that can be implemented in DBC systems is true anonymity and
untraceablity of transactions. eCache implemented a second class of DBCs
that would carry blind signatures instead of standard ECDSA signatures. The
limitation was that it was only possible to reissue ONE standard DBC into
ONE blind DBC, and vice versa. To make this possible in a single transaction,
only specific amounts were supported. Instead of allowing any amount being
represented by a DBC, the mint had one key per denomination and amount. A
published list of keys and their respective values could then be used by both
the mint and recipients to determine what amount and denomination a blind
DBC had, simply by testing the signature. This way a direct conversion between
DBCs with standard or blind signature was possible without risk of the mint
being defrauded. However, when challenged the mint could not possibly prove
from the history log that a spent DBC was actually the result of a previously
recorded issue operation, leaving the possibility that the mint could overissue

11



DBCs undetected. The user could however still challenge the honesty of the
mint by revealing the used blinding parameters.

JarMix

The issue of auditability of blind signature DBCs lead to the creation of the
JarMix protocol. The goal here was the preservation of untraceability and
anonymity of the user’s payment while at the same time being able to audit
the mint’s issuing behavior. To this end a new entity is introduced that is
independent of the mint: The Mix. The Mix is an entity independent of the
Mint that only serves the purpose of increasing the anonymity and untraceability
of user payments. The mental model here is a jar of coins into which the user
can put one coin in and get a random other coin out. For this end, the mix
operates the “jar of coins”, a pool of valid DBCs with unique ownership keys
per DBC. A user contacts the mix and requests the swap of DBCs. The mix
returns a signed statement containing the public keys of ownership for both the
DBC in the pool and the expected DBC from the user. The user then creates a
matching transaction for the mint, producing a DBC to the mix as owner. That
transaction is encrypted to the mint and given to the mix. The mix appends
its ownership public key and forwards the packet to the mint. The mint then
decrypts the transaction, verifies that the ownership of the output DBC matches
the attached ownership key of the mix, and returns the new DBC to the mix. It
is important to note here that all responses by the mint are signed by the mint.
On receiving the reply from the mint, the mix returns the previously agreed on
DBC and ownership private key to the user. At this point the mint does not
know which DBC the user received, and the mix does not know which DBC the
user spent. Nor does the history log allow the mix from learning anything about
the input DBC because that transaction is still kept in the spend pool (with
ownership of output DBC being a concealed value). The user needs to trust the
Mix to not spend the DBC on his own until it has been reissued. To keep Mixes
honest, auditors can do test transactions through the mix, increasing the risk
for dishonest mixes to be discovered. For increased privacy, and decreased risk
of fraud by mixes, the user would reissue mix-DBCs through other mixes, with
a short delay in between. The result of a chain of mix operations would be that
no mix nor the mint could easily connect the original input DBC with the newly
generated output DBC. At the end of a chain of mix transactions the user then
reissues the last mix-DBC at the mint directly. The anonymity set and level of
untraceability at that point depend on the combined trust in the mixes, and the
number of mix transactions done by other users - similar to the level of privacy
provided by mixes for communication. Various extensions have been described
to extend JarMix so that the mix cannot double spend the DBC it returns to
the user. They are beyond the scope of this document.

12



Fees

eCache (and JarMixes) simply subtracted a unit from the input amount based
on the number of DBCs issued as a result of the transaction, allowing for trivial
prediction of fees.

Usage of modern DBC systems

While eCache itself is not in use anymore, lessons learned from designing and
developing the system have influenced other developments. One of these examples
is Mute, a secure messenger developed in 2016. DBCs are very useful for micro
payments. The requirements for processing, storage and bandwidth are very low,
while at the same time allowing the system to operate for extended periods of
time without the users having to communicate with the mint. And DBCs are
just a few hundred bytes in size. For these reasons Mute used blind (untraceable,
anonymous) DBCs to allow users to pay for the service on a per-message basis -
using DBCs as digital stamps. Users would purchase some amount of the internal
stamp currency, turn it into blind DBCs owned by any one of the Mute servers,
and then include those DBCs into messages. The Mute servers would verify
the Mint’s signature and check for double spend. On successful verification, the
message would be forwarded.

Multi-currency Mints and advanced ownership

DBC systems are flexible and easily extended to support further use cases. While
the ownership feature described above is powerful, it can be adapted for more
complex protocols. An example for that is the experimental extension developed
for eCache.

Instead of simply recording the public key for transaction signatures, the hash
of a “contract” was recorded in the DBC. A contract is a boolean expression
describing the conditions under which a DBC will be reissued.

Furthermore the contract can apply to more than a single DBC transaction.
eCache supported “combined” transactions in which two or more DBC trans-
actions could be presented to the mint at the same time, the conditions of
each of the input DBCs referring to the output DBC templates of the other
transaction. This allows creating schemes that allow swapping the ownership of
two certificates presented by two different users.

For example, a DBC issued for the denomination “gold” for owner A and another
for the denomination “EURO” for owner B can be simultaneously processed if
and only if the respective output DBCs would be “gold” for owner B and EURO
for owner A. This essentially implements a swap or sales.

13



To facilitate processes like these eCache in addition implemented an “Issue Book”
which cached newly issued DBCs created in combined transactions. It allowed
anybody knowing the output DBC template to retrieve the signature for it. That
way a user could pre-sign a transaction, give it to another user for combining it
with his transaction and sending it to the mint, and then ask the Mint for the
signature to be able to recreate the result of the transaction.

Issuer risk

A central question for digital money systems is that of the issuer risk, that is:
Risks introduced by the issuer. These can include manipulation of issued capital
outside the bounds of backing capital, the operation outside of protocol, and
unavailability due to the mint ceasing operation or being forced to close down.
It is the issuer risk that is the main problem that blockchain cryptocurrencies
have strongly mitigated. For DBC systems, one possible approach would be to
separate backing from issuing, and make backing access dependent on continuous
successful verification of mint operations. eCache could be used in this context
since it allows users to demonstrate mint dishonesty, and everybody to audit
the issued capital.

Future

Watching and participating in the digital money sphere over the last decades is
only part of the story, the other is an interest and excitement on where things
will go. For me there seems to be an evolutionary path that has the “issuer risk”
as the attractor. Issuer risk is the risks faced by a user of a digital money system
of not being in direct possession of an intrinsic value, but instead rely on some
entity for keeping and transmitting value.

In the beginning, issuer risk was overcome by trusted issuers and a legal system.
The issuer would be liable to the users of his system, and the legal system would
both regulate his behavior and practice, and also promise redress in case the
issuer would defraud the users. Added onto that was the idea of issuer insurance,
basically guaranteeing the deposits of users up to a certain amount by other
issuers taking over the liability in case of issuer failure.

The next step was the conception of verifiable and recoverable systems. Here a
combination of protocols and auditing entities would be able to verify the good
behavior of an issuer at any time. Should an issuer misbehave, his reputation and
business would effectively be blackballed. The users of the system would in that
case profit from the separation of issuing and backing, or bonding/underwriting,
and the ability of those systems to be recoverable in the sense that a third
party could verify the state of transactions and pay out the deposits accordingly.
What the inception of verifiable and recoverable systems underestimated is the

14



regulatory risk of providing payment systems. Regulators demonstrated that
they had nothing of this independent money crap. Issuers were shut down,
backing operators robbed, people sent to jail for decades. While verifiable and
recoverable systems were able to deal with technical failure and fraud, they were
no match for governments simply taking them down. And those systems failed
to ever get popular when their operators were anonymous. Before solutions
for these issues were implemented (and solutions do possibly exist), the next
evolutionary step took place:

Trustless blockchain cryptocurrencies. Here the system itself says good-bye to
any notion of backing or intrinsic value. Instead, only virtual fiat money was
issued, by the system itself, held exclusively in the system, regulated purely
by protocol implemented in software. Instead of trusting a single entity, or
a system of institutions, the trust in these “trustless” systems is distributed
over those parties that cooperatively but independently operate the system.
These parties being, realistically, the miners. It needs to be kept in mind that
“the miners” is no pre-defined group, it just happens to be the set of entities
currently engaged in mining cryptocurrency, and that set is highly fluid. One
miner disappearing can be replaced by a dozen new miners starting the activity
- without any coordination whatsoever. This construction is believed by many
to solve the issuer risk forever. I tend to disagree. Yes, it is for sure a much
more resilient setup, but for me it is less then certain if that makes the system
immune to regulatory attack, blocking, subversion. Yes, you will always be able
to prove that you still have cryptocurrency, but its exchange value might be
close to zero, and it might not be transmittable at all. It should be noted that
in verifiable DBC systems the fact of still having valid DBCs is true even if the
mint is taken down. And these DBC systems are recoverable: Another entity is
able to just continue operating from the known public state. The main essential
difference being that in blockchain cryptocurrencies the backing still remains,
while in pure DBC systems that abstract another currency this would not be
the case. One of the areas of research hence could be thinking about distributed
monetary control for DBC currencies.

That is where we are at. We went from trusted, to verifiable, to possibly trustless.
The word I am missing in that enumeration is “trustworthy”. So far, we have
failed to build systems that are worthy of our trust. When we have trustless
however, do we really need trustworthy anymore? My view is that building
trustless systems is very limiting from perspectives on complexity, economics,
privacy and adaptability. Trustless systems are necessarily huge, needing many
persons to cooperate according to the same protocol. This makes them vulnerable
to error of specification and a changing environment. They are also inherently
expensive to operate and likely will never be as fast and cheap a DBC systems.
Let alone that they are likely never going to achieve the same strength of privacy
- anonymity and untraceability - then blind DBC systems can reach.

I do however have an intuition that we might find ourselves evolving past trustless
systems towards trustworthy systems relatively soon. Let me throw a few ideas

15



and sketches at you.

Black Box Computing

A few decades ago, people started working on something called “Trusted Comput-
ing”. The idea there is simple (the technology isn’t): Create computer hardware
that can prove to a remote user that it is exactly one specific kind of computer,
with one specific kind of hardware and hardware settings, running exactly one
specific program. This means that you could verify from afar that a computer
is doing exactly what you would expect. This is called “attestation”. Then
came the cloud. Now hardware manufacturers are incentivized to push trusted
computing even further, and make it widely available in their server processors.
The next step taken was encrypted RAM. Here the processor itself would encrypt
all access to RAM, preventing even somebody with physical access to learn
the contents of memory. The key to encrypt the RAM would be generated
by the processor itself, and never be made available to any other hardware or
software. Examples for this are SGX, SME and SVE. Combine attestation and
encrypted RAM, and you find yourself with a remote box that can process secrets.
Secrets that nobody could learn or manipulate other than through the software
running on the box - software that itself would be attested. I call this “black
box computing”. The moment these technologies are mature (they aren’t right
now), we will be able to set up black box computers anywhere, remotely, and be
sure that our software runs as expected, and our secrets are secure on them -
even against physical attack. This leaves us with the question if we should trust
the software running on those machines. And the answer is as always: Trust
but verify. Amazing advances have been made over recent years in the field of
formally verified software. Software for which we can make mathematical proves
that it performs one specific activity, and no other, even when presented with
evil input. Please sit for a second and think about this: A formally verified
program, running on a remote trusted computer, with no access to RAM but by
the verified program. Should we reach that stage, and I’m very confident we will,
our environment for running digital money systems will change dramatically.
We will again be able to rely only on verifiable and recoverable systems, and
they will be able to easily move from machine to machine, control money supply,
and adapt as needed. And these systems will be cheaper, faster, more private
and more powerful than anything done with blockchains today. There will be
DBC systems again.

Until then, there is more to do. Recently there have been developments to create
distributed DBC mints that are resilient to byzantine failure of a minority of
participating nodes. Distributed DBC mints that are able to do blind signatures
or employ JarMix for untraceability. It will be exciting to see what comes out of
this. I have the feeling that the time of DBCs is still to come.

16



This article as PDF2.

2/files/DigitalMoneyDBC.pdf

17

/files/DigitalMoneyDBC.pdf

	Digital Money
	Digital Book Money
	Blockchain Cryptocurrencies
	Digital Bearer Certificates
	Spendbook
	Signatures
	Blind signatures

	Mint functions
	Examples from history
	Yodelbank
	Digicash


	eCache
	Auditable and Verifiable DBC mints
	DBC Expiry
	HSM Signatures
	Ownership
	Publicly verifiable Signatures
	Signed Mint responses
	Idempotent API

	User-provided DBC templates
	Concealed unique values in templates
	Public transaction history log
	Spend-Pool

	Half-offline capability
	Recovery
	eCache anonymity
	Blind signatures
	JarMix

	Fees

	Usage of modern DBC systems
	Multi-currency Mints and advanced ownership
	Issuer risk

	Future
	Black Box Computing


